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Autonomous Hamiltonian systems 

Hamilton equations of motion: 

Variational equations: 

Let us consider an N degree of freedom 
autonomous Hamiltonian systems of the 

form:  

As an example, we consider the Hénon-Heiles system: 
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Symplectic integration schemes 

OH A B i A i B

j
τL τ(L +L ) c τL d τL n+1

i=1

e = e e e + (τ )

If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator      , i.e. the solution of 
Hamilton equations of motion, by 

HτL
e

for appropriate values of constants ci, di. This is an integrator of order n. 

 

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  

As an example, we consider a particular 2nd order symplectic integrator 

with 5 steps [Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]: 

   
   
      

A A
AB B

(3- 3) (3- 3)
3ττ ττ L τ L

LL L6 6
32 2

2SABA =  e  e  e  e  e
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Tangent Map (TM) Method 

The Hénon-Heiles system can be split as: 

Any symplectic integration scheme used for solving the Hamilton equations 

of motion, which involves the act of Hamiltonians A and B, can be extended 

in order to integrate simultaneously the variational equations [Ch.S. 

Gerlach, PRE (2010) – Gerlach, Ch.S., Discr. Cont. Dyn. Sys. (2011) –   

Gerlach , Eggl, Ch.S., IJBC (2012)]. 
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The Klein – Gordon (KG) model 

 
2N

22 4l l
K l l l+1 l

l=1

p ε 1 1
H = + u + u + u - u

2 2 4 2W

  .
 
 
 

 chosen  uniformly froml

1 3
ε ,

2 2

with fixed boundary conditions u0=p0=uN+1=pN+1=0. Typically N=1000. 

Parameters: W and the total energy HK. 

The discrete nonlinear Schrödinger (DNLS) 

equation 

   ,     
N

2 4 * *

D l l l l+1 l l+1 l l l l

l=1

β 1
H = ε ψ + ψ - ψ ψ +ψ ψ ψ = q + ip

2 2

 
 
 

 
W W

,
2 2

Disordered lattices 

where εl are uniformly chosen from                    and β is the nonlinear parameter. 

Conserved quantities: The energy HD and the norm S of the wave packet. 
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Spreading of wave packets 

Flach, Krimer,  Ch.S., PRL (2009) 

Ch.S., Krimer, Komineas, Flach, PRE (2009) 

Ch.S., Flach, PRE (2010) 

Laptyeva, Bodyfelt, Krimer, Ch.S., Flach , EPL (2010)   

Bodyfelt, Laptyeva, Ch.S., Krimer, Flach S., PRE (2011) 

DNLS W=4, β= 0.1, 1, 4.5 KG W = 4, E = 0.05, 0.4, 1.5 

slope 1/3 slope 1/3 

 

Characteristics of wave 

packet spreading: 

m2~tα 

with α=1/3 or α=1/2, for 

particular chaotic regimes. 

Single site excitations α=1/3  
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The KG model 

Two part split symplectic integrators 

 
 
 
 


22 4l

l

2

l l+

N

K

l=

l

1

1 l
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u + u + u - u

2 4
H

2W
+

p

2
=
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The DNLS model 
A 2nd order SABA Symplectic Integrator with 5 steps, combined with 

approximate solution for the B part (Fourier Transform): SIFT2  

    
 
 


2

2 2 2

n n+1 n

2l
lD l l +l n

l

1- q q
ε β

q - p+ p + q + p
2

pH =
8

A B 

   ,      * *

l+1 l l

2 4

l lD +1 l l l

l

l l

β
ε ψ - ψ ψ +

1
H = ψ = q + ip

2
+

2
ψ ψψ
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The DNLS model 

Symplectic Integrators produced by Successive Splits (SS)  

    
 
 


2

2 2 2

n

2l
l l n+1D

l

l l n n+1- q q
ε β

q - p+ p + q + p
2

pH =
8

A B 

B1 B2 

   
   
      

A A
AB B

(3- 3) (3- 3)
3ττ ττ L τ L

LL L6 6
32 2

2 2SS(SABA ) =  e  e  e  e  e

Using the SABA2 integrator we get a 2nd order integrator with 13 steps, SS(SABA2)2: 

   
   
      

B B1 1BB B12 2

(3- 3) (3- 3)
3τ'τ' τ'τ' L τ' L

LL L6 6
32 2e  e  e  e  e

   
   
      

B B1 1BB B12 2

(3- 3) (3- 3)
3τ'τ' τ'τ' L τ' L

LL L6 6
32 2e  e  e  e  e

 ' = / 2
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The DNLS model 

Three part split symplectic integrator of order 2, with 5 

steps: ABC2 

A B B A
C

τ τ τ τ
L L L L

τL2 2 2 2
2ABC =  e  e  e  e  e

This low order integrator has already been used by e.g. Chambers, MNRAS 

(1999) – Goździewski, Breiter, Borczyk, MNRAS (2008). 

    
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 


2

2 2 2

n

2l
l l n+1D
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l l n n+1- q q
ε β

q - p+ p + q + p
2
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8

A B C 
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2nd order integrators: Numerical results 
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4th order symplectic integrators 

Starting with the 2nd order integrators SS(SABA2)2 and 

ABC2 we construct the 4th order integrators: 

•SS(SABA2)4 with 37 steps 

•ABC4 with 13 steps 

Starting from any 2nd order symplectic integrator S2nd, we can 

construct a 4th order integrator S4th using a composition 

method [Yoshida, Phys. Let. A (1990)]: 

4th 2nd 1 2nd 0 2nd 1

1/3

0 11/3 1/3

S (τ) = S (x τ)×S (x τ)×S (x τ)

2 1
      x = - ,       x =

2 - 2 2 - 2
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4th order integrators: Numerical results 
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Conclusions 
 

• We presented several efficient integration methods suitable for 
the integration of the DNLS model, which are based on 
symplectic integration techniques. 

• The construction of symplectic schemes based on 3 part split 
of the Hamiltonian was emphasized (ABC methods).  

• A systematic way of constructing high order ABC integrators 
was presented.  

• The 4th order integrators proved to be quite efficient, allowing 
integration of the DNLS for very long times.  
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Workshop  

Methods of Chaos Detection and Predictability:  

Theory and Applications 
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